Weak Acid Hypochlorous Solution used for Hygienic Control in the Laboratory Animals Facilities and the Poultry Farms

Mana Miyake HSP corporation , Japan

Mana Miyake

Table. Bactericidal effect of Weak Acid Hypochlorous solution

Strain	ATCC	Inoculum	Time (sec)							
Strain	AICC	×10 ⁷ cfu/ml	15	30	60	300	600			
P.aeruginosa	27853	2.0~16								
S.aureus	25923	1.1~16	-	-						
E.faecalis	29212	1.1~11	-	-						
E.faecium	35667	1.4~16	—	-						
E.coli	25922	2.0~9.2	—	-						
S.maltophilia	13637	2.1~7.0		+	—	—				
C.albicans	10231	1.0~3.4	—	_						
B.subtilis	6633	4.7~7.2			+	+				
	※ WAHS pH 6.0~6.3 available chlorine concentration 50ppm									

The 17th Annual Meeting of Japanese Society of Environmental Infections

Mana Miyake

	Time	рН							
Strain	Time	5.0	6.0	7.0	8.0				
C.albicans	15sec	—	—	—	+				
ATCC10231	30sec	—	—	—	—				
	30sec	+	+	+	+				
S.maltophilia	1min	—	—	+	+				
ATCC13637	3min	—	—	—	—				
	1min	+	+	+	+				
B.subtilis	5min			+	+				
ATCC6633	10min	—		_	+				
	60min	_	_	_	—				

Table. Bactericidal effect of Weak acid Hypochlorous solution

brain heart infusion broth at 37°C for 72h +; alive -; not detected

available chlorine concentration 50ppm

The 17th Annual Meeting of Japanese Society of Environmental Infections

Mana Miyake

Table. Efficacy of a Weak Acid Hypochlorous Solution Against Various Kinds of Virus

	Enve		_	Infectivity		Time (sec)								Cited
	lope	Strain		(log)	Control	5	15	30	60	180	300	600	concentration (ppm)	literature
DNA	-	HSV	HF	6.8	+	_	-	-	-				50	Ж3
			UW	6.8	+	_	—	—	—					Ж3
			1- HS	6.2	+	+		+	—		—	-		※ 1
			2 - KP	4.4	+	+		+	+		_	—		※ 1
	+	Adeno V.8- SRL	TC-21847 clinical isolate	2.0	+		_	_	_		_	_	50	※ 1
		CAV	D43	6.8	+					—			50	※ 2
RNA	-	CoxA	9	3.5	+	—	—	—	—		—		50	¥2
			16	4.9	+								50	*3
		CoxB	1	5.0	+	Ι	-	-	-		-		50	*3
			2	6.3	+	_	—	—	—		—			
			3	6.8	+	_	—	—	—		—			
			4	6.0	+	—	—	—	—		—			
			5	5.9	+	—	—	—	—		—			
		Echo	7	4.4	+			I					50	Ж3
		En	71	6.8	+							_	50	Ж3
	+	Inf	A/PR/8/34	4.0	+	_	—	—	—		—	—		※ 1
			A/Tokyo/2/75	5.9	+	+	—	—	—		—	_	50	Ж3
			AA/FM/1/47	5.6	+	+	_	_	_		_	_		Ж3
		+ <i>HIV</i>	1-ШВ	3.0 + +	+	—		—	—				30	※ 1
					+	_		—	—				50	
			Ondersteport Strain	5.8	+			_		_			50	※ 2
		CCV	1-71	5.9	+			_					50	※ 2
		Semliki forest virus	National Institute Infectious Diseases origin	5.0	+		—	_	_		_	_	50	※ 1

Cited literature

X1 Efficacy of a Weak Acid Electrolytic Water Against Various Kinds of Pathogenic Microorganisms Takako TACHIKAWA

%2 beneficial effect against various kinds of dog virus (MLT company data)

Mana Miyake

3 Deliberation report of the antiviral efficacy of electrolyzed oxidizing water made by Aquatid

The technique to improve the contact with WAHS and the bacteria

Nonionic suefactant (Polyglycerol esters of fatty acids or Washing agent with Sucrose fatty acid esters) were added to WAHS (P-WAHS,S-WAHS)

 Table Surface Tension of Tap water, Sodium hypochlorite, WAHS, P-WAHS, S-WAHS,

 Polyglycerol esters of fatty acids or Washing agent with Sucrose Fatty Acid Esters.

Deodorization effect of Weak acid Hypochlorous Solution

Experimental condition Booth capacity 6m Sprayed DW, 2.1, 8.3 mg/h/m³ WAHS in 30min (250ml/h) odor indicator value Handheld Odor Meter (OMX-LR, SHINEI) Trimethilamin **Isovaleric** acid Ammonia 1.2 2.5 initial concentration **3.7ppm** Rate of odor indicator value 90 80 80 001 80 2ppm 2 1.5 10ppm 1 ********** 0.2 **}}** 0.5 0 0 30 15 45 75 0 15 60 0 30 15 0 30 45 60 Time (min) Time (min) Time (min) In spraying Control DW 2.1 mg/h/m³ • 8.3 mg/h/m³ Rate of odor indicator value = odor indicator value / odor indicator value at the start of spraying Fig Deodorization effect of WAHS on malodorous substance

Mana Miyake

Application of Weak Acid Hypochlorous Solution to Husbandry

Poultry farm (breeding hen farm)

Hand and utensil washing Poultry house disinfection Drinking water Spraying in the poultry house Disinfection of hatching eggs

Disinfection of Hatching Eggs by spraying Weak Acid Hypochlorous Solution

Alternatives to formalin fumigation

No mutagenicity and No irritation High degradability

Experimental condition

Temperature :16.5~24.5°C Capacity :24m³

Formalin : 10g/m³·20min fumigation (20min) →emission (70min)

WAHS: 200ppm pH 5.5~6.0 7.1mg/m³·90min

(The 37th meeting of JAEAT)

Mana Miyake

Results

Survival rate of microorganism on the Egg shell

Fig. The comparison in the disinfection effect and the hatchability between Spraying WAHS and Formaldehyde Fumigation

Mana Miyake

Effect of Drinking Weak Acid Hypochlorous Solution on the survival rate of chicken (ongoing research)

50ppm WAHS drinking test in chicken from hatching to culled

※ Control ; Tap water

